Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.684
Filtrar
1.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38567463

RESUMEN

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Asunto(s)
Autofagia , Neoplasias Colorrectales , Oro , Nanopartículas del Metal , Humanos , Oro/química , Oro/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Nanopartículas del Metal/química , Autofagia/efectos de los fármacos , Acetilación , Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/tratamiento farmacológico , Células HT29 , Caspasas/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
2.
J Mater Chem B ; 12(16): 3908-3916, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38567452

RESUMEN

The fabrication of shape-selective coinage metal nanoclusters (MNCs) has promising applications due to their exceptional physical and chemical molecule-like properties. However, the stability of the specific geometry of the nanoclusters, such as their cubic shapes, is unclear and has been unraveled by assessing the nanoclusters' interactions with different environments. In this work, we investigate the morphological stability of cubic structured, coinage metal nanoclusters of varying sizes ranging from 14 to 1099 atoms. The impact of solvent environments like water and the presence of ionic liquids (IL) on the stabilization of the MNCs were assessed using molecular dynamics (MD) simulations. In general, smaller MNCs composed of less than 256 atoms encountered structural distortion easily compared to the larger ones, which preserved their cubic morphology with minimal surface aberrations in water. However, in the presence of 4M 1-butyl-1,1,1-trimethyl ammonium methane sulfonate [N1114][C1SO3] IL solution, the overall cubic shape of the MNCs was successfully preserved. Strikingly, it is observed that in contrast to the noble MNCs like Au and Ag, the cubic morphology for Cu MNCs with sizes less than 256 atoms exhibited significant stability even in the absence of IL.


Asunto(s)
Cobre , Nanopartículas del Metal , Simulación de Dinámica Molecular , Cobre/química , Nanopartículas del Metal/química , Líquidos Iónicos/química , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
3.
Food Chem ; 448: 139210, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569408

RESUMEN

The detection of heavy metals in tea infusions is important because of the potential health risks associated with their consumption. Existing highly sensitive detection methods pose challenges because they are complicated and time-consuming. In this study, we developed an innovative and simple method using Ag nanoparticles-modified resin (AgNPs-MR) for pre-enrichment prior to laser-induced breakdown spectroscopy for the simultaneous analysis of Cr (III), Cu (II), and Pb (II) in tea infusions. Signal enhancement using AgNPs-MR resulted in amplification with limits of detection of 0.22 µg L-1 for Cr (III), 0.33 µg L-1 for Cu (II), and 1.25 µg L-1 for Pb (II). Quantitative analyses of these ions in infusions of black tea from various brands yielded recoveries ranging from 83.3% to 114.5%. This method is effective as a direct and highly sensitive technique for precisely quantifying trace concentrations of heavy metals in tea infusions.


Asunto(s)
Cromo , Cobre , Contaminación de Alimentos , Plomo , Nanopartículas del Metal , Plata , , Té/química , Cromo/análisis , Plomo/análisis , Plata/química , Nanopartículas del Metal/química , Cobre/análisis , Contaminación de Alimentos/análisis , Análisis Espectral/métodos , Rayos Láser , Camellia sinensis/química , Metales Pesados/análisis , Límite de Detección
4.
Sci Rep ; 14(1): 9144, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644378

RESUMEN

In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.


Asunto(s)
Antibacterianos , Ciprofloxacina , Cobalto , Luz , Fotólisis , Óxido de Zinc , Óxido de Zinc/química , Ciprofloxacina/química , Cobalto/química , Antibacterianos/química , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Nanopartículas/química , Cinética , Catálisis
5.
ACS Sens ; 9(4): 2141-2148, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38578241

RESUMEN

The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).


Asunto(s)
Hemoglobina Glucada , Azul de Metileno , Hemoglobina Glucada/análisis , Humanos , Azul de Metileno/química , Grafito/química , Oro/química , Nanopartículas del Metal/química , Puntos Cuánticos/química , Hemoglobinas/análisis , Hemoglobinas/química , Ácidos Borónicos/química , Compuestos Ferrosos/química , Metalocenos/química , Límite de Detección , Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno/química
6.
Anal Methods ; 16(16): 2456-2463, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591267

RESUMEN

An elevated level of homocysteine (Hcy) in serum is closely related to the development of various diseases. Therefore, homocysteine has been widely employed as a biomarker in medical diagnosis and the on-site detection of homocysteine is highly desired. In this study, a truncated highly specific aptamer for homocysteine was screened and used to design a lateral flow strip (LFS) for the detection of homocysteine. The aptamer was derived from a previously reported sequence. Based on the result of molecular docking, the original sequence was subjected to truncation, resulting in a reduction of the length from 66 nt to 55 nt. Based on the truncated aptamer, the LFS was designed for the detection of homocysteine. In the presence of homocysteine, the aptamer selectively binds to it, releasing cDNA from the aptamer/cDNA duplex. This allows cDNA to bind to the capture probe immobilized on the T zone of the strip, resulting in a red signal on the T zone from gold nanoparticles (AuNPs). The strip enables the visual detection of homocysteine in 5 min. Quantitative detection can be facilitated with the aid of ImageJ software. In this mode, the linear detection range for homocysteine is within 5-50 µM, with a detection limit of 4.18 µM. The strip has been effectively utilized for the detection of homocysteine in human serum. Consequently, the combination of the truncated aptamer and the strip offers a method that is sensitive, quick, and economical for the on-site detection of homocysteine.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Homocisteína , Nanopartículas del Metal , Homocisteína/sangre , Homocisteína/química , Homocisteína/análisis , Aptámeros de Nucleótidos/química , Humanos , Oro/química , Nanopartículas del Metal/química , Límite de Detección , Técnicas Biosensibles/métodos , Tiras Reactivas/química , Simulación del Acoplamiento Molecular
7.
ACS Sens ; 9(4): 2031-2042, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38593209

RESUMEN

Surface-enhanced Raman scattering (SERS) technology, as an important analytical tool, has been widely applied in the field of chemical and biomedical sensing. Automated testing is often combined with biochemical analysis technologies to shorten the detection time and minimize human error. The present SERS substrates for sample detection are time-consuming and subject to high human error, which are not conducive to the combination of SERS and automated testing. Here, a novel honeycomb-inspired SERS microarray is designed for large-area automated testing of urease in saliva samples to shorten the detection time and minimize human error. The honeycomb-inspired SERS microarray is decorated with hexagonal microwells and a homogeneous distribution of silver nanostars. Compared with the other four common SERS substrates, the optimal honeycomb-inspired SERS microarray exhibits the best SERS performance. The RSD of 100 SERS spectra continuously collected from saliva samples is 6.56%, and the time of one detection is reduced from 5 min to 10 s. There is a noteworthy linear relationship with a R2 of 0.982 between SERS intensity and urease concentration, indicating the quantitative detection capability of the urease activity in saliva samples. The honeycomb-inspired SERS microarray, combined with automated testing, provides a new way in which SERS technology can be widely used in biomedical applications.


Asunto(s)
Saliva , Plata , Espectrometría Raman , Ureasa , Ureasa/química , Saliva/química , Saliva/enzimología , Espectrometría Raman/métodos , Humanos , Plata/química , Nanopartículas del Metal/química , Análisis por Micromatrices
8.
Chem Commun (Camb) ; 60(35): 4715-4718, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38596907

RESUMEN

Chemically conjugated branched DNA was successfully synthesized by a copper-free click reaction to construct sophisticated and higher-order polyhedral DNA nanostructures with pre-defined units in one pot, which can be used as an efficient nanoplatform to precisely organize multiple gold nanoparticles in predesigned patterns.


Asunto(s)
ADN , Oro , Nanopartículas del Metal , Nanoestructuras , ADN/química , Oro/química , Nanoestructuras/química , Nanopartículas del Metal/química , Química Clic , Tamaño de la Partícula
9.
ACS Sens ; 9(4): 2122-2133, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38602840

RESUMEN

Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.


Asunto(s)
ADN Tumoral Circulante , Oro , Grafito , Nanopartículas del Metal , Neoplasias Pancreáticas , Grafito/química , Humanos , Oro/química , Nanopartículas del Metal/química , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/análisis , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/diagnóstico , Técnicas Biosensibles/métodos , Espectroscopía de Terahertz/métodos , Hibridación de Ácido Nucleico , Límite de Detección
10.
Nature ; 628(8009): 771-775, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38632399

RESUMEN

Quantitative detection of various molecules at very low concentrations in complex mixtures has been the main objective in many fields of science and engineering, from the detection of cancer-causing mutagens and early disease markers to environmental pollutants and bioterror agents1-5. Moreover, technologies that can detect these analytes without external labels or modifications are extremely valuable and often preferred6. In this regard, surface-enhanced Raman spectroscopy can detect molecular species in complex mixtures on the basis only of their intrinsic and unique vibrational signatures7. However, the development of surface-enhanced Raman spectroscopy for this purpose has been challenging so far because of uncontrollable signal heterogeneity and poor reproducibility at low analyte concentrations8. Here, as a proof of concept, we show that, using digital (nano)colloid-enhanced Raman spectroscopy, reproducible quantification of a broad range of target molecules at very low concentrations can be routinely achieved with single-molecule counting, limited only by the Poisson noise of the measurement process. As metallic colloidal nanoparticles that enhance these vibrational signatures, including hydroxylamine-reduced-silver colloids, can be fabricated at large scale under routine conditions, we anticipate that digital (nano)colloid-enhanced Raman spectroscopy will become the technology of choice for the reliable and ultrasensitive detection of various analytes, including those of great importance for human health.


Asunto(s)
Coloides , Nanopartículas del Metal , Plata , Espectrometría Raman , Espectrometría Raman/métodos , Coloides/química , Coloides/análisis , Plata/química , Plata/análisis , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Nanopartículas del Metal/análisis , Hidroxilamina/química , Hidroxilamina/análisis , Prueba de Estudio Conceptual
11.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637784

RESUMEN

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Asunto(s)
Alternaria , Nanopartículas del Metal , Quercus , Solanum lycopersicum , Plata/química , Nanopartículas del Metal/química , Antifúngicos , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X , Antibacterianos
12.
Front Cell Infect Microbiol ; 14: 1301351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655284

RESUMEN

Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum ß-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 µg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.


Asunto(s)
Antibacterianos , Cobre , Escherichia coli , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Escherichia coli/efectos de los fármacos , beta-Lactamasas/metabolismo , Animales , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Nanopartículas/química
13.
Sci Rep ; 14(1): 9159, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644372

RESUMEN

Different strains of Escherichia coli that exhibit genetic characteristics linked to diarrhea pose a major threat to both human and animal health. The purpose of this study was to determine the prevalence of pathogenic Escherichia coli (E. coli), the genetic linkages and routes of transmission between E. coli isolates from different animal species. The efficiency of disinfectants such as hydrogen peroxide (H2O2), Virkon®S, TH4+, nano zinc oxide (ZnO NPs), and H2O2-based zinc oxide nanoparticles (H2O2/ZnO NPs) against isolated strains of E. coli was evaluated. Using 100 fecal samples from different diarrheal species (cow n = 30, sheep n = 40, and broiler chicken n = 30) for E. coli isolation and identification using the entero-bacterial repetitive intergenic consensus (ERIC-PCR) fingerprinting technique. The E. coli properties isolated from several diarrheal species were examined for their pathogenicity in vitro. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared spectrum (FT-IR), X-ray diffraction (XRD), zeta potential, and particle size distribution were used for the synthesis and characterization of ZnO NPs and H2O2/ZnO NPs. The broth macro-dilution method was used to assess the effectiveness of disinfectants and disinfectant-based nanoparticles against E. coli strains. Regarding the results, the hemolytic activity and Congo red binding assays of pathogenic E. coli isolates were 55.3 and 44.7%, respectively. Eleven virulent E. coli isolates were typed into five ERIC-types (A1, A2, B1, B2, and B3) using the ERIC-PCR method. These types clustered into two main clusters (A and B) with 75% similarity. In conclusion, there was 90% similarity between the sheep samples' ERIC types A1 and A2. On the other hand, 89% of the ERIC types B1, B2, and B3 of cows and poultry samples were comparable. The H2O2/ZnO NPs composite exhibits potential antibacterial action against E. coli isolates at 0.04 mg/ml after 120 min of exposure.


Asunto(s)
Pollos , Diarrea , Desinfectantes , Infecciones por Escherichia coli , Escherichia coli , Peróxido de Hidrógeno , Óxido de Zinc , Animales , Óxido de Zinc/farmacología , Óxido de Zinc/química , Peróxido de Hidrógeno/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Diarrea/microbiología , Diarrea/veterinaria , Pollos/microbiología , Desinfectantes/farmacología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Ovinos , Bovinos , Nanopartículas/química , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Heces/microbiología , Nanopartículas del Metal/química
14.
Biosensors (Basel) ; 14(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38667152

RESUMEN

This work reports on the surface functionalization of a nanomaterial supporting localized surface plasmon resonances (LSPRs) with (synthetic) thiolated oligonucleotide-based biorecognition elements, envisaging the development of selective LSPR-based DNA biosensors. The LSPR thin-film transducers are composed of noble metal nanoparticles (NPs) embedded in a TiO2 dielectric matrix, produced cost-effectively and sustainably by magnetron sputtering. The study focused on the immobilization kinetics of thiolated oligonucleotide probes as biorecognition elements, followed by the evaluation of hybridization events with the target probe. The interaction between the thiolated oligonucleotide probe and the transducer's surface was assessed by monitoring the LSPR signal with successive additions of probe solution through a microfluidic device. The device was specifically designed and fabricated for this work and adapted to a high-resolution LSPR spectroscopy system with portable characteristics. Benefiting from the synergetic characteristics of Ag and Au in the form of bimetallic nanoparticles, the Au-Ag/TiO2 thin film proved to be more sensitive to thiolated oligonucleotide binding events. Despite the successful surface functionalization with the biorecognition element, the detection of complementary oligonucleotides revealed electrostatic repulsion and steric hindrance, which hindered hybridization with the target oligonucleotide. This study points to an effect that is still poorly described in the literature and affects the design of LSPR biosensors based on nanoplasmonic thin films.


Asunto(s)
Técnicas Biosensibles , Oro , Nanopartículas del Metal , Oligonucleótidos , Plata , Resonancia por Plasmón de Superficie , Titanio , Titanio/química , Oro/química , Plata/química , Nanopartículas del Metal/química , Oligonucleótidos/química , Compuestos de Sulfhidrilo/química , ADN , Hibridación de Ácido Nucleico
15.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667155

RESUMEN

Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL-1 using a 0.15 nmol dm-3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Oro , Neoplasias Pulmonares , Nanopartículas del Metal , Oro/química , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Receptores ErbB/genética , Nanopartículas del Metal/química , Neoplasias Pulmonares/diagnóstico , Técnicas Biosensibles , Detección Precoz del Cáncer
16.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667157

RESUMEN

The early detection of procalcitonin (PCT) is crucial for diagnosing bacterial infections due to its high sensitivity and specificity. While colloidal gold colorimetric and immune-chemiluminescence methods are commonly employed in clinical detection, the former lacks sensitivity, and the latter faces challenges with a brief luminescence process and an elevated background. Here, we introduce a novel approach for the quantitative analysis of PCT using surface-enhanced Raman spectroscopy (SERS), leveraging the enhanced properties of metal nanoparticles. Simultaneously, we employed a magnetic nanoparticle coating and surface biofunctionalization modification to immobilize PCT-trapping antibodies, creating the required immune substrates. The resulting magnetic nanoparticles and antibody complexes, acting as carriers and recognition units, exhibited superparamagnetism and the specific recognition of biomarkers. Then, this complex efficiently underwent magnetic separation with an applied magnetic field, streamlining the cumbersome steps of traditional ELISA and significantly reducing the detection time. In conclusion, the exploration of immunomagnetic bead detection technology based on surface-enhanced Raman spectroscopy holds crucial practical significance for the sensitive detection of PCT.


Asunto(s)
Separación Inmunomagnética , Polipéptido alfa Relacionado con Calcitonina , Espectrometría Raman , Humanos , Separación Inmunomagnética/métodos , Nanopartículas del Metal/química , Técnicas Biosensibles
17.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38667159

RESUMEN

The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-treated biosensors. In this research, we compared antibody modification by plasma treatment and physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Consequently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed the electrochemical properties owing to electrostatic interactions. In this study, we compared the following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody (a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were 0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the plasma treatment generated many carboxyl groups and increased the number of antibody adsorption sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as a simple method for modifying various molecular recognition elements on printed carbon electrodes.


Asunto(s)
Técnicas Biosensibles , Carbono , Electrodos , Oro , Oxígeno , Carbono/química , Oro/química , Nanopartículas del Metal/química , Propiedades de Superficie , Límite de Detección , Técnicas Electroquímicas , Adsorción
18.
Biosensors (Basel) ; 14(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38667162

RESUMEN

The peroxidase-like behaviors of gold nanoparticles (AuNPs) have the potential to the development of rapid and sensitive colorimetric assays for specific food ingredients and contaminants. Here, using NaBH4 as a reducing agent, AuNPs with a supramolecular macrocyclic compound ß-cyclodextrin (ß-CD) capped were synthesized under alkaline conditions. Monodispersal of ß-CD@AuNPs possessed a reduction in diameter size and performed great peroxidase-like activities toward both substrates, H2O2 and TMB. In the presence of H2O2, the color change of TMB oxidization to oxTMB was well-achieved using ß-CD@AuNPs as the catalyst, which was further employed to develop colorimetric assays for ascorbic acid, with a limit of detection as low as 0.2 µM in ddH2O. With the help of the host-guest interaction between ß-CD and adamantane, AuNPs conjugated with nanobodies to exhibit peroxidase-like activities and specific recognition against Salmonella Typhimurium simultaneously. Based on this bifunctional bioprobe, a selective and sensitive one-step colorimetric assay for S. Typhimurium was developed with a linear detection from 8.3 × 104 to 2.6 × 108 CFU/mL and can be provided to spiked lettuce with acceptable recoveries of 97.31% to 103.29%. The results demonstrated that the excellent peroxidase-like behaviors of ß-CD@AuNPs can be applied to develop a colorimetric sensing platform in the food industry.


Asunto(s)
Ácido Ascórbico , Colorimetría , Oro , Nanopartículas del Metal , beta-Ciclodextrinas , Nanopartículas del Metal/química , beta-Ciclodextrinas/química , Oro/química , Técnicas Biosensibles , Peroxidasa , Peróxido de Hidrógeno , Salmonella typhimurium , Salmonella , Límite de Detección
19.
Biosensors (Basel) ; 14(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667165

RESUMEN

The exploration into nanomaterial-based nonenzymatic biosensors with superb performance in terms of good sensitivity and anti-interference ability in disease marker monitoring has always attained undoubted priority in sensing systems. In this work, we report the design and synthesis of a highly active nanocatalyst, i.e., palladium and platinum nanoparticles (Pt&Pd-NPs) decorated ultrathin nanoporous gold (NPG) film, which is modified on a homemade graphene paper (GP) to develop a high-performance freestanding and flexible nanohybrid electrode. Owing to the structural characteristics the robust GP electrode substrate, and high electrochemically catalytic activities and durability of the permeable NPG support and ultrafine and high-density Pt&Pd-NPs on it, the resultant Pt&Pd-NPs-NPG/GP electrode exhibits excellent sensing performance of low detection limitation, high sensitivity and anti-interference capability, good reproducibility and long-term stability for the detection of small molecular biomarkers hydrogen peroxide (H2O2) and glucose (Glu), and has been applied to the monitoring of H2O2 in different types of live cells and Glu in body fluids such as urine and fingertip blood, which is of great significance for the clinical diagnosis and prognosis in point-of-care testing.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Grafito , Nanopartículas del Metal , Paladio , Platino (Metal) , Grafito/química , Oro/química , Platino (Metal)/química , Paladio/química , Nanopartículas del Metal/química , Biomarcadores/orina , Humanos , Peróxido de Hidrógeno , Aleaciones/química , Glucosa/análisis , Electrodos , Papel
20.
Biosensors (Basel) ; 14(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667176

RESUMEN

The identification and quantification of biomarkers with innovative technologies is an urgent need for the precise diagnosis and follow up of human diseases. Body fluids offer a variety of informative biomarkers, which are traditionally measured with time-consuming and expensive methods. In this context, lateral flow tests (LFTs) represent a rapid and low-cost technology with a sensitivity that is potentially improvable by chemiluminescence biosensing. Here, an LFT based on gold nanoparticles functionalized with antibodies labeled with the enzyme horseradish peroxidase is combined with a lensless biosensor. This biosensor comprises four Silicon Photomultipliers (SiPM) coupled in close proximity to the LFT strip. Microfluidics for liquid handling complete the system. The development and the setup of the biosensor is carefully described and characterized. C-reactive protein was selected as a proof-of-concept biomarker to define the limit of detection, which resulted in about 0.8 pM when gold nanoparticles were used. The rapid readout (less than 5 min) and the absence of sample preparation make this biosensor promising for the direct and fast detection of human biomarkers.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Oro , Nanopartículas del Metal , Biomarcadores/análisis , Humanos , Oro/química , Nanopartículas del Metal/química , Mediciones Luminiscentes , Proteína C-Reactiva/análisis , Peroxidasa de Rábano Silvestre , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...